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The energies and the spin configurations of the ground states of the classical 
Heisenberg and classical planar (XY) models with first- and second-neighbor 
interactions on the triangular and plane hexagonal lattices are obtained. The 
phase diagrams in the Jt-J2 plane are determined, where Jt and J ;  are the coef- 
ficients of the first- and second-neighbor interactions, respectively. It is noted for 
the system on the plane hexagonal lattice, that an infinite degeneracy of the 
ground states occurs in some region of the Jr J2 plane and then the study is 
made under an introduction of an infinitesimal third-neighbor interaction, 
removing the degeneracy. 

KEY WORDS:  Heisenberg model; planar model; XY model; triangular lat- 
tice; hexagonal lattice; ground state. 

1. I N T R O D U C T I O N  

Recently magnetic properties of low-dimensional substances have received 
much attention. In particular, substances on the triangular and hexagonal 
lattices attracted much interest owing to the variety of the phases. The 
ground states of the Ising models with first- and second-neighbor interac- 
tions were determined by Kaburagi and Kanamori (1~ for the systems on the 
triangular lattice and by Kud6 and Katsura (2/for those on the hexagonal 
close-packed and plane hexagonal lattices. The ground states of the 
classical Heisenberg model were investigated for the systems on the bcc, 
fcc, and other lattices by Yoshimori, (3) Lyons and Kaplan, (4) and 
Nagamiya, (5/ and his group. (6) 
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The systems on the triangular and plane hexagonal lattices, however, 
have not been investigated so far in detail. In this paper the ground states 
of the classical Heisenberg and planar (XY) models on the both lattices are 
obtained. The coefficients of the first- and second-neighbor interactions are 
denoted by Ja and J2, respectively) The J 1 - J 2  plane is divided into regions 
in which various phases, including the triangular and helical phases, occur, 
and the spin configurations in the respective regions are determined. For  
the system on the plane hexagonal lattice, the ground state is degenerate 
infinitely in some region of the plane, and a third-neighbor interaction is 
included to remove it. 

In Sections 2 and 3, the systems on the triangular and plane 
hexagonal lattices, respectively, are studied. Section 4 is for conclusion and 
discussion. 

2. T R I A N G U L A R  LATTICE 

We consider the classical Heisenberg and planar (XY) models with 
first- and second-neighbor interactions, on the triangular lattice. We use 
the oblique coordinate system shown in Fig. I. A unit cell contains one 
spin. The position of a spin m is denoted by R m. Let the exchange energy 
between spins m and n be -2Jm, ,S  m 'S,,. Here Sm is a classical unit vector 
in d dimensions, such that 

Sm'Sm=l (2.~) 

We assume d =  2 or 3. The coefficient Jmn is set equal to J1 and J2 when m 
and n are first and second neighbors, respectively, and zero otherwise. 
{Jm,} satisfy Jmn = Jnm = Jm n.O (translational invariance). The 
Hamiltonian of the system is expressed as follows: 

J~f = - ~  2 Jm,,S", 'S,, (2.2) 
/ n  n 

When d =  3, the Hamiltonian is the one for the classical Heisenberg model, 
and when d =  2 it is the one for the planar (XY) model. 

Let 

1 
ffq = ~ m  Sm exp( iq" Rm) , f f * = f f  q (2.3a) 

](q) = Y~,, J,,,, exp(iq - R,,,,) (2.3b) 

3 The antiferromagnetic classical X Y  model with first-neighbor interaction is treated in Ref. 7. 
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Oblique coordinate system of the triangular lattice employed in the present paper. 

so that 

S m =  2 ffq exp( iq  �9 Rm) (2.4a) 
q 

1 
Jm,, = ~  ](q) exp(--iq �9 Rm,,) (2.4b) 

q 

where Rmn = R m -  Rn, and q are those wave vectors in the first Brillouin 
zone that exp(iq. R) obeys the periodic boundary condition, and N is the 
total number of unit cells in the system. By using (2.3a) and (2.3b), 
Eqs. (2.2) and (2.1) are transformed into 

~X( = - X  ~, ~7(q) O'q" 0"~ (2.5) 
q 

2 ffq '0"~ q , =  6q,,0 (2.6) 
q 

Our problem is to find {Sm} which makes YF given by (2.2) minimum 
under the strong constraint (2.1), that is, equivalent to find {%} which 
makes ~ given by (2.5) minimum under the constraint (2.6). We, however, 
look for the minimum of , ;f  under the weak constraint 

20"q  " ff~ : 1 (2.7) 
q 
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that is, we require (2.6) only for q ' =  0, which is equivalent to one con- 
dition ~m Sm 'Sm = N in place of N conditions in (2.1). If the obtained {Sm } 
satisfies the strong constraint (2.2), the spin configuration is one of those 
which give the minimum of ~t ~ under the strong constraint./4) 

* under the We take variations of gt ~ given by (2.5) with respect to % 
subsidiary condition (2.7). By using the Lagrangian multiplier 2, we have 

Z EJ(q) %-2%3"6o-* =0 
q 

This condition leads to Z = J(q) or eq = 0. This means that when 2 =Y(q~) 
for some q~, then %2 = 0 for all q2 for which Y(q2)r J(ql). Now we have 

e - ~ / N  = -Y(ql  ) (2.8) 

and the {Sin} is given by (2.4a) in terms of %,  which are nonzero only for 
those q satisfying Y(q)=Y(q~), and these nonzero values of % are only 
restricted by the condition (2.7). 

Now we look for a ql which makes (2.8) minimum. Let qx = q ' a l  and 
qy = q 'a2 ,  where al and a 2 are the unit vectors in the oblique coordinate 
system as shown in Fig. 1. Then 

J(q) = 2J 1 [-cos qx + cos q.v + cos(qx - q v)] 

+ 2J2[cos(q x + qy) + cos (2qx-  qy) + cos(qx - 2q v)] (2.9) 

=2JI(2XY+ 2Y 2 - 1 ) +  2J212X 2 - 1 + 2 X Y ( 4 Y 2 - 3 ) ]  (2.10) 

where 

qx+q.v Y _ c o s q x - q , .  (2.11) X -  cos 2 ' 

The expression (2.10) can be written as follows: 

+ cosEqcos(+ } 

+ cos [ qcos (2.12) 
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where q = Iq] and q~ is the azimuthal angle of q in the polar coordinate 
system. The sixfold symmetry of Y(q) is observed in this expression (2.12). 

The conditions &7(q)/C?qx = c~Y(q)/Oqy = 0 give 

[ J x Y + J 2 ( 2 X + 4 Y 3 - 3 Y ) ] ( 1 - X 2 ) 1 / 2 = O  (2.13) 

[ J I ( X + 2 Y ) + J 2 ( 1 2 X Y 2 - 3 X ) ] ( 1  - y2)1/2 ~-- 0 (2.14) 

The solutions under the weak constraint are determined by (2.13) and 
(2.14), and they are classified in five types, F (ferromagnetic), AF 
(antiferromagnetic), T (triangular), H~ (helical) and H2 (helical), in 
Table I, which are candidates of the ground state. Figure 2 shows the value 
of ~/J2 as a function of ~ - J 1 / J 2 .  We see that H 2 does not appear as a 
ground state. The q for the other four types of states are shown in Fig. 3 in 

Table I. Spin Configurations of the Systems on the Triangular Lattice, and 
the Wave Number  q = (qx, qy) and the Energy. a 

Type 

cOSQl=- (~§ c~ 6' g---~ 

(x, Y) (qx, qy) Energy per unit cell 

F 
AF 

T 

H1 

H2 

(_+1, _+1} (0,0) 6J2(~ + 1 ) 
(+1, -T-l) (rr, ~z) 2J2(~ + 1) 

(0, 0) (~z, 0) 
(0,~) 

1 l 2 T - ~ )  3J2(~- 2) 

_+5(1 ~)ua,+_5(1-~)1/2 (Q~,0) ( 3 ~ < ~ < I )  

(0, 01) 

) (2Q2, Q2) 

(Q2, 2Q2) 

(-3~<~<9) 

a Double signs refer the same order. Q1 and Q2 are taken such that q lies in the first Brillouin 
zone. 
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Fig. 2. e/J  2 v e r s u s  ~ for several states of the systems on the triangular lattice. Here Eex/N 
denotes e, and ~ = J1/J2. 
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Fig. 3. The first Brillouin zone of the triangular lattice. F, AF, T, and H 1 are the spin con- 
figurations in the ground states. The lines connecting the origin and T are H2, which are not 
realized as a ground state. 
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the first Brillouin zone. All these states except F have the sixfold symmetry 
as we can see in (2.12). 

In the ferromagnetic state F where q =0 ,  the spin configuration is 
given by 

Sm=U (2.15) 

where u is a unit vector in any direction. (2.15) satisfies the strong con- 
straint (2.1). 

In the antiferromagnetic state AF, J(q) is degenerate for q = qi, for 
i =  1, 2, and 3, where ql = (~, ~), q2 = (TZ, 0),  and q3 = (0, 7@ The general 
solution under the weak constraint is given by 

3 
Sn = ~ bl exp(iq/. Rn) (2.16) 

l--1 

(a) 

\ ,,- \ 

(b) 
Fig. 4. Spin configurations of the systems on the triangular |attice in the antiferromagnetic 

state. (a) q = (~, ~); the Uq-Vq plane coincides with the x z plane. + and - indicate that the 

spin directs upward and downward, respectively. (b) Example where the Uq--Yq plane is obli- 
que to the x - z  plane. The arrows show the projection on the x y  plane. The solid and dashed 
arrows mean that the z components are positive and negative, respectively. 
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where {bt} is an arbitrary set of three vectors satisfying 

b l ' b l  +b2"b2+b3"b3 = 1 (2.17) 

If we further require 

b,.b,,=O (l@l') (2.18) 

the solution satisfies also the strong constraint (2.1); we can easily see that 
(2.18) is also necessary for this. Then b~, b2, and b3 are three mutually 
orthogonal vectors, and the length of their sum is unity. Figure 4 shows the 
cases of (a) b l = b 2 = 0 ,  b3mk and (b) b l= i /x /3 ,  ba=j /x/3 ,  b 3 = k / ~  , 
where i, j, and k are the unit vectors in the x, y, and z directions, respec- 
tively. 

Let the spin configuration in the state H1 be 

3 3 

Sn= ~ b, exp(iq, 'Rn)+ ~ bt* exp( - iq , 'Rn)  (2.19) 
/=1  l=1  

where q l= (Q1 ,  Q1), q2= (Q1, 0), and q3=(0, Q1), and Q1 is given in 
Table I. The weak constraint requires 

3 

~, b, 'bF = 1/2 
l = 1  

f 

Fig. 5. Helical ordering H 1 of the systems on the triangular lattice; dl/J2=-1/4 and 
q = (0.622n, 0.622n). 
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The strong constraint (2.1) now gives 

b,- br = 0, b * -  b* = 0 ( l , / '  = 1, 2, 3) 

b~.b*=O (l,l'=1,2,3;lr (2.20) 

The conditions (2.20) require that two among bl, b2, and b3 are zero and 
only one (say b~) is given by 

bl = �89 - i v q )  (2 .21)  

where uq and vq are an arbitrary set of orthogonal unit vectors. Hence 

S,  = u~ cos(q " R,) + Vq sin(q �9 R,,) (2.22) 

The state H 1 is a helical state and the spin configuration is shown in Fig. 5. 
In the state T, {Sn} is given also by (2.22) if we put q equal to either 

one of _+ (2n/3, -2~/3) .  Then the lattice points are divided into three sub- 
lattices: e, (m, m + 3p); fi, (m, m + 3p + 1); and 7, (m, m + 3p + 2), and we 

have Sn=uq,  ( - - I l q + N / B Y q ) / 2 ,  a n d  ( - % + x / 3 v q ) / 2  for the , ,  fl, and 
7 sublattices, respectively. The double signs here correspond to those of q. 
The state T is a triangular state and is shown in Fig. 6. The phase diagram 
in the J r - J 2  plane is shown in Fig. 7. It is compared with that of the 
corresponding Ising model (~) shown in Fig. 8. The change of the wave vec- 
tor against the ratio of the exchange interactions 4, is shown in Fig. 9. As 
J1 decreases from plus infinity to minus infinity for a fixed negative J2, a 
component of the wave vector q changes as 0 ~ Q1--~ ~--'  2~/3, which 
correspond to the change of states F --, H j --, AF ~ T, where Q1 is given in 
Table I, The first and second transitions are of the second order, while the 
third one is of the first order. 

Fig. 6. State T of the systems on the 
triangular lattice; q = [(2/3) n, (2/3) n].  

.,a~ f "~al,.r 

\ t  

827142/3-4-10 
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Fig. 7. Phase diagram of the classical Heisenberg and planar models on the triangular lattice 
in the J~-J2 plane. 
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Phase diagram of the Ising model on the triangular lattice in the Ji-J2 plane. 
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Fig, 9. 
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1- 
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AF 

A component Q of q versus ~, showing the change of the wave vector q against the 
ratio of the exchange interactions of the systems on the triangular lattice. 

The chirality K is defined by (8'9) 

2 
K ~ - - - ~  ( S ~ x S ~ + S T x S ~ + S ~ x S / ) 3  

This is shown to be equal to + Wq - _+% x Vq (Wq is the unit vector perpen- 
dicular to the Uq-Vq plane in the right-hand system). In general, uq and Vq 
have z compoxients in the classical Heisenberg model. If we restrict uq and 
Vq in the x y plane, we get ground states of the classical planar model. In 
this case K = k or - k ,  one of the two choices, and K can be regarded as an 
order parameter. (8,9~ In Figs. 5 and 6, arrows are to be understood as 
drawn not in the x-y plane but in the Uq-Vq plane associated to each lattice 
point, in the case of the classical Heisenberg model. 

3. P L A N E  H E X A G O N A L  L A T T I C E  

We consider the classical Heisenberg and planar (XY) models on the 
plane hexagonal lattice. We take an oblique coordinate system as shown in 
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Fig. 10. A unit cell contains two spins. The coefficients of the interactions 
are denoted by -2 J~ ,  - 2 J 2 ,  and - 2 J 3 ,  between first, second, and third 
neighbors, respectively. We include third-neighbor interactions, since the 
ground state of the system only with the first- and second-neighbor interac- 
tions is degenerate infinitely in some cases, as will be seen later. Let the 
spin vector of the vth atom (v = 1, 2) in the nth unit cell be S,,~ and its 
position be R.v = R. + Rv, where R.  is the translational lattice vector. The 
lattice distance between second neighbors is taken as a unit of length. 

The Hamiltonian ~ is written as 

-Z  2 Z Y Jm ,ovSm 'Snv (3.1) 
m ;7 /~ v 

q # v 

where N is the total number of unit cells, and 

1 
~q~, = ~*q.  = ~  Sin. e x p ( - i q ' R m . )  (3.3) 

Y.uCq) = Z Jm,u,nv exp[iq �9 (Rm~ -- R.v)] (3.4) 
m 

The strong constraint in the present problem is given by 

S.~u. Sin. = 1 (3.5a) 

/III~ iIII~ ii I 

Fig. 10. Oblique coordinate system on the plane hexagonal lattice empIoyed in the present 
paper. Circles and squares denote the sites on the sublattices v = 1 and 2, respectively. 
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that is, 

2 ffq# " 0"~_ q',u 
q 

As the weak constraint, we use 

= (~ q ' ,0  (3.5b) 

~ �9 * = 2  f f q / z  f f q / z  

q # 

which is a sum of (35b) for q ' =  O, and is equivalent to 

(3.6) 

Y', ~ Sm~" Sm~ = 2N 
m # 

We take variations of .gff given by (3.2) with respect to 6"~, under the 
weak constraint (3.6). By using the Lagrange multiplier 2, we have 

2 2 2 6 . ;  = o 
v q V 

The minimum of the energy is realized when 

[Y,,(q) - 26u~.] 6q~ = 0 (3.7) 
,u 

Hence if 6qu is nonzero for a certain q = ql, .~ must be equal to one of the 
eigenvalues 2[+-)(ql) of the 2 x 2 matrix (Y~v(ql)), and aq~ = 0 for q = q2 if 
both of the eigenvalues 2(-+)(q2) of the matrix (J~v(q2)) are not equal to 
twice the 2, and JC~/N is equal to negative twice the 2. Thus, - e  = - ~ / N  
is equal to twice of one of the eigenvalues 2(+)(q) of the matrix (Y~v(q)) for 
a q and the spin configuration is given by a linear combination of those 
eigenvectors r177 that the corresponding eigenvalues are equal to half of 
the -e .  Since Jll(q)=Y22(q) and Y~2(q)= Y*~(q), the normalized eigenvec- 
tors and eigenvalues are given by 

1(,) 
6(q+ = ~  _+e' ~, u (3.8) 

and 

--q/~ --qv 

~t v 

= 1 (1 + d ~<') ( J l i ( q !  , 
2 - \J1Ae '~< 

=.711(q) + J~A 

J1Ae'<7 1 
Yl,(q) ) \ •  ' ~ ' )  

(3.9) 
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where u is an arbitrary unit vector, and A and :( denote A(q) and c((q), 
respectively, which are the absolute value and the argument of the complex 
number Y12(q)/J~; so that J12(q)= J1A(q)ei~'(q( Then e = -2)~(+)(q) and 
~/+/ or e =  -22 ( - ) (q )  and ~;-)  correspond to the ground state according qv 
to whether J~ is positive or negative. 

Explicit forms of Y~,v(q) are given by 

J11(q)=J22(q)=2J2[cosq .~+cosqy+cos (qx -qy ) ]  (3.10) 

Y~2(q) = Y2*~(q) = J~ Ae i~' 

= exp [- - i (q~  + qy)/3 ] [J l  { 1 + exp(iq~) + exp(iqy) } 

+ J3{exp[i (q~-  qy)] + e x p [ i ( -  qx + qy)] 

+ exp[i(q~ + qy)] }] (3.11) 

where 
~' = ~ - (qx + qy)/3 

cos ~ = { 1 + cos qx + cos qy + ~[2 cos(q., - qy) + cos(q x + q).)] }/A 

sin c~ = [sin qx + sin qy + ~ sin(q~ + qy)]/A 

A = {3 + 2[cos qx+cos  q y + c o s ( q x - q y ) ]  

+ terms of order ~ and ~2}i/2 (3.12) 

and q~ = q. al ,  qy = q'  a2, and ~ = J3/J 1. In terms of X and Y defined by 
(2.11), e = ~ / N  is expressed as follows: 

where 

= -4J2(2Y 2 + 2 X Y -  1)-T-2JIA (3.13) 

A = [ ( 4 Y 2 + 4 X Y +  1)+  ~2(16y4+ 1 6 X : y 2 - 2 4 Y 2 - 8 y 2 + 9 )  

+ 2~(SXY 3 + 4Y 2 + 2X 2 - 2 X Y -  3)] 1/2 (3.14) 

The minimum of the energy is given by the upper sign when J1 > 0 and the 
lower sign when J1 < 0. 

From the conditions Oa/Oqx = Oe/Oqy = 0, we have 

{ 4 J 2 Y + A  ' I - 8 ~ y 3 + 1 6 ~ 2 X y 2 + ( 2 - 2 ~ )  Y 

+ (4~ - 8~ 2) X] }(1 - X2) 1/2 = 0 (3.15) 

{4Jz(X + 2 Y) + A-~ [32[ 2 y3 + 24~XY2 + 1612 y x  2 

+ ( 4 - 2 4 1 2 + 8 ~ ) Y + ( 2 - 2 ~ ) X ] } ( 1 - Y 2 ) l / 2 = O  (3.16) 
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First we consider the case J3=0 .  Then (3.15), (3.16) have six solutions, 
A+, A , B+, B , C, and D, which are given in Table II. They are can- 
didates of the ground state. The energy e as a function of { = J,/J2 is shown 
in Fig. 11. We see that B+, B , and C do not appear as a ground state, 
except at the points where they are degenerate with D. A+ and A satisfy 
the strong constraint (3.5a). A+ is the ferromagnetic state and A is the 
antiferromagnetic state. D is a helical state, as will be seen later. The phase 
diagram in the J1-J2 plane is shown in Fig. 12. In the case of the 
antiferromagnetic state, the situation is similar to the one for the systems 
on the triangular lattice. 

In the region where D is the lowest energy state, we see that the 
energy is the same on the line 

x = - r +  ]-~+ ~ (Yr  (3.17) 

and, when Y=0,  X is arbitrary ( - 1  ~<X~< 1). Hence the wave number q 
for the lowest energy state cannot be determined. The infinite degeneracy is 
removed if we add an infinitesimal small third-neighbor interaction. Then 
(3.13) is transformed into 

~ = g O + s  

Table II. Spin Configurations of the Systems on the Plane Hexagonal Lattice, 
and the Wave Number and the Energy 

Type (X, Y) 

X1 (2_1)/y = - - Y 1 + \ 1 6  4 ) 1  ' ( l ~ < r i ~ l ,  Yl#O) 

X i is arbitrary ( - I ~ < X  i ~ l ,  YI=O) 

(qx, q~) ~bi2 Energy per unit cell 

A+ (+1, ___1) 

A (_+1, _+1) 

B~ (• 

B (o, 0) 

D (X1, Y1) 

(o, o) o 
(o, o) 

(~, 0) 0 
(0, ~) 

o 

Indefinite 

-6J2({ +2) (J, >0) 

-6J2( 2 - { ) ( J l  < 0) 
2J2(2 - 4) (J~ > 0) 

2J2(2 + ~) (J, <0) 

6J2 

j:(~.2 + 12)/2 

(J2<0,-6~<~_~<6) 
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Fig. 11. 
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e/J2 versus ~ for several states of the systems on the plane hexagonal lattice. Here 

Eex/N denotes e. The solid lines show the ground state. 

where 

% =  - 4 J 2 ( 2 y 2 + 2 X Y  - 1 ) - 2  I J , ] ( 4 y 2 + 4 X Y +  l )  u2 (3.18) 

8 X Y  3 + 4 y2 + 2X  2 _ 2 X Y -  3 
el = - s g n ( J 1 )  2J3 ( 4 Y 2 + 4 X Y + l ) U  2 (3.19) 

eo is a constant  on the line given by (3.17). The spin configurat ion in the 
ground state is determined by minimizing e~. We substitute (3.17) into 
(3.19), and then 3z~/OY= O gives 

(32 y2 _ 42 + 4)( i72 + r _ 2)(8 y2 _ _  ~ _ _  2) = 0 (3.20) 

The three solutions of (3.20) are denoted by Dla ,  D2a, and D3~. The  
restriction - 1 ~< Y~< 1 gives al lowable regions of r for each solution. The  
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A~ 
(? 

J2 

C) 
,11 

-T 

A+ 

[3 

Fig. 12. Phase diagram of the classical Heisenberg and planar models on the plane 
hexagonal lattice of J3 ~ 0. 

least value of the energy is attained either by Dla, D2a, or D3~ , or at the 
zone edges. The latters are classified as D l b [ X =  _+l, YT-(~+2)/4],  
D2b [ X =  ___1, Y= ( ~ -  2)/4], and D3b I X =  _+({2_ 20)/16, Y= _+1 ]. 
Allowable regions of d and the energies of Dlb, D2b, and D30 are the same 
as those of Dla, D2a, and D3a. The value of gl/J 3 is shown as a function of 

in Fig. 13. These situations are shown in Table III and in the Brillouin 
zone in Fig. 14. 

Let the spin configurations of these solutions be 

(S("~}~= ~ (b'lexp(iql'R'~)+b*exp(-iq''Rnl)) (3.21) 
S(~)) ,=1 \b,2 exp(iq,- R~2) + b* exp( - iq~. R,2)) 

hi1 = %~1, b~2 = -%,1 exp[icd(q)] (3.22) 

where the upper and lower signs in (3.22) correspond to J~ < 0 and J1 > 0, 
respectively, q~ for I=  1, 2, and 3 are given in Table III; for example, 
ql = (2Q1, QI), q2 = (QI, 2Q1), and 113 = (Q1, - Q I )  in D 1. By similar con- 
siderations to those given for the systems on the triangular lattice, we see 
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E~/J3 

,/~,\o~ / 
D3/ \ I ,/ 

I ' 1 _.~ ,,o3 

6 
I 

Fig. 13. e l / J  3 versus ~. The solid, dash-dotted, and dashed lines denote the states D1, D2, 
and D~, respectively. 

that bn does not vanish for only one of l when the strong constraint (3.5a) 
is imposed. Then if bll #0 ,  the spin configuration is given by 

b t l  = ( 1 1 1  - -  i v l ) / 2  

( 
S.2] \ _+ l ( U l - i v l )  exp(ic~ + iq'R.2)} 

�89 + ivl)exp(i,q " R.1) 
+ _+�89 + iq 'R .2 )}  

(v,) 
= cos q- R.1 + sin q" R.~ (3.23) 

il 2 v 2 

( u 2 ) =  + (  cosc~ sin c~ (u t~  (3.24) 
v2 - - s i n  c~ cos ~ / \ v l /  

where uv and vv (v = 1, 2) stand for uq~ and vqv (v = 1, 2) which are such 
orthogonal unit vectors that (uq~, vq~) and (%2, vq2) lie in the same plane, 



Table III. Spin Configurations of the Systems on the Plane Hexagonal Lattice 
wi th  Interactions up to Third Neighbors 

Type 

zY 1 = X 2 = X 3 = - Y-}-  (~,2/16 - I/4)/Y Q I  = c o s - i [  - ( ~  q-  2 ) / 4 3  

Qz=cos ~[(~-2)/4] Q3=cos-~[(~2-20)/16] 

r  lcos 112(cosQ3+2)/~][+~ 

~P2=sgn(J3) lcos ][2(2cosQ3+1)/411+z 

(x, Y) (qx, qy) r e l  

(Q1, 2Q1) (-6~<r 
/ K 

0 

Da~ X2,_+~ 1+ (2Q> Q2) Q2+~ J3~(~ - 4)/2 

(Q> 2Q2) ( - 2 < ~ < 6 )  

(+' ) D2b --+1,--4(4--2) (Q2, Q2) 

D3a X3' - 4 \ 2 

(0, Q3) ( 6~<{~< -2,2~<{~<6) 
/- \ 

\ 1 o 1  

C B-] qr':y C 

C B- '-~ C 

Fig. 14. The first Brillouin zone of the plane hexagonal lattice. The origins are A+ and A . 
The solid and dashed lines, respectively, denote DI and D 3 in the case of J3 > 0 and D2 and 
D 3 in the case of J3 < 0. 
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. . . . . .  ~ . . . . . . . .  / ~  

~1, ~ I I_ J I " I / -j 

// // 

Fig. 15. Spin configuration of the systems on the plane hexagonal  lattice. State D3 where 
Jl/J2 = 4, q = (0.577~z, 0.577rc), ~12 = 256~ J3 > 0. 

A~ 

J2 

II 
.-ff 

A+ 
0 

+ 31 

[31 

Fig. 16. Phase diagram of the classical Heisenberg and planar  models on the plane 
hexagonal  lattice, in the case of J3 > 0. The replacements J1 --+ - J 1 ,  A + --* A , A --) A +, 
and D 1 ---, D 2 give the one for the case of J3 < 0. 
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and the sense of the rotation in going from uq~ to vql is the same as that 
from uq2 to vq2; so that, %1 x vql =%2 X Vqz. The relative phase angle ~12 
from S,1 to S,2 is determined by 

~b~2=c~ for Y l < 0  and ~+~z for Y l > 0  (3.25) 

where ~ is given in (3.12). Hence the spin configuration of the system in 
which the signs of J1 and J3 are changed at the same time is simply reduced 
from that of the original system by reversing the directions of spins on one 
sublattice (Sin1 ~ Sml, Sm2 ~ -Sin2). When ~ = 0, the state C is realized. C 
is a superposition of two independent triangular states T for two triangular 
sublattices v = 1 and 2. 

Thus we confirm that D~, D2, and D 3 are three kinds of helical states. 
D is divided into D~ and D3 when Y 3 > 0, and into D~ and D 3 when J3 < 0. 
Examples of the spin configurations are shown in Fig. 15. As mentioned in 
the case of the triangular lattice, each spin pattern is understood as drawn 
in the uq vq plane associated to each lattice point. In the case of the 
classical planar model, the %-vq plane coincides with the x y  plane. The 
phase diagram in the Jl-J2 plane is shown in Fig. 16. It is compared with 
the one for the corresponding Ising model (2~ shown in Fig. 17. The 
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Fig. 17. Phase diagram of the Ising model on the plane hexagonal lattice. (a) and (b) in the 

case of J1 < 0, and (c) and (d) in the case of J~ > 0. They are degenerate in the respective 
regions. 
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Q 

A .  J I , I A- 
OI 

/Da 

Fig. 18. A component Q of q versus ~, showing the change of the wave vector q against the 
ratio of the exchange interactions for the systems on the plane hexagonal lattice in the case of 
J3 ~> 0. 

variation of the wave vector is shown as a function of ~ = J~/J2 in Fig. 18, 
which shows the transitions A+ ~ D~--, D 3 ~ A as J1 decreases from 
plus infinity to minus infinity for a fixed negative J2. 

4. C O N C L U S I O N  A N D  D I S C U S S I O N  

In this paper the energy and the spin configuration of the classical 
Heisenberg and classical planar models on the triangular and plane 
hexagonal lattices were determined. 

In the case of the Ising model, complex structures appear especially 
under a magnetic field. The energies of these states, however, are higher 
than that of the triangular state, for the present systems. We saw that the 
ground state energy is obtained within the single q scheme in the present 
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case; though we have to consider the degeneracy of the states in order to 
get the spin configurations of the ground state. 

In the systems on the triangular lattice with first- and second-neighbor 
interactions, the boundaries between the ferromagnetic, antiferromagnetic, 
triangular, and two helical phases were obtained. The triangular phase of 
the classical planar model on the triangular lattice is doubly degenerate, 
and the chirality order existsJ s'9) 

In the systems on the plane hexagonal lattice with the first- and 
second-neighbor interactions, there exist some regions in the J1 J2 plane, 
where there occur an infinite number of q giving the ground state energy, 
and an infinistesimal third-neighbor interaction removes the infinite 
degeneracy. Then the phase diagram was obtained by introducing a 
positive or negative infinitesimal J3. Kanamori et al. ~1~ found complex 
ground state spin configurations of the Ising model on the hexagonal lat- 
tice in some region of the J l / h - J z / h  plane, where h is the magnitude of the 
external field. The energy of it is higher than the ground state energy of the 
present model, and similar configurations are not realized in our model at 
zero external field. 

Up to this point we considered the two-dimensional triangular and  
plane hexagonal lattices. Low-dimensional substances in experiments are 
not purely two-dimensional but have layered structures. In such cases they 
have longitudinal exchange interactions. If the longitudinal interactions are 
restricted only within the same chain, the whole spin configuration is 
simply an accumulation of a single surface configuration with qz = 0 or ~z 
according as Jo > 0 or Jo < 0, where Jo is the coefficient of the interaction. 
When a second-neighbor interaction in the x - z  (or y - z ,  etc.) plane exists, 
complex spin configurations other than these will appear. 

Many of the low-dimensional substances in experiments are 
analyzed ~1) in terms of the Ising model. They are, however, neither pure 
Ising nor pure classical Heisenberg or planar model. The ground states of 
the intermediate models, i.e., the Ising-Heisenberg or Heisenberg X Y  
model will be investigated in the future. 
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